Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name: Real Analysis-I

Subject Code: 4SC05REA1		Branch: B.Sc. (Mathemati	Branch: B.Sc. (Mathematics)	
Seme	ester : 5 Date : 25/11/2022	Time : 02:30 To 05:30	Marks : 70	
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 				
Q-1	Attempt the following questions:		[14]	
a)	Define: Null Set.		(02)	
b)	State Raabe's test for series.		(02)	
c)	Prove : $ x ^2 = x^2 = -x ^2$, $\forall x \in R$.		(02)	
d)	Define: Least Upper Bound of a seque	ence. Find lub of $\left\{\frac{n}{n+1}: n \in N\right\}$.	(02)	
e) f) g) h) i)	Find the range set of the sequence $\{n^2 \ Define: Bounded sequence.$ Define: Exponential Function. True/False: $\underline{A_n} \leq \underline{lim}a_n$ for all $n \in N$ True/False: $\sum_{n=1}^{n} \frac{1}{n^9}$ is divergent.	$n \in N$.	(02) (01) (01) (01) (01)	
Attempt any four questions from Q-2 to Q-8				
Q-2 a) b) c)	Attempt all questions Prove that the set of Rational numbers Prove : (i) $ x + y \le x + y $ for $\forall x$ (ii) $ x - y \ge x - y $ for \forall Define : Conditionally Convergent Set	is not ordered complete. $x, y \in R$ $\forall x, y \in R$ ries and Absolutely Convergent Ser	[14] (07) (05) ies. (02)	
Q-3 a)	Attempt all questions Show that for any two positive real nut that $na > b$.	mbers there exist a positive integer	<i>n</i> such [14] (05)	
b)	Prove : A sequence can't converge to	more than one point.	(05)	
c)	Prove that $\sin x$ is uniformly continuo	us on $[0,\infty)$.	(04)	
Q-4	Attempt all questions		[14]	
a)	State and prove Bolzano Weierstrass t	neorem for sequences.	(07)	

Page ${\bf 1}$ of ${\bf 2}$

b) Find
$$\overline{lim}a_n$$
 and $\underline{lim}a_n$ where $a_n = (-1)^n (1 + \frac{1}{n})$. (05)

c) Prove that
$$\lim_{n \to \infty} \frac{1+3+5+\dots+(2n-1)}{n^2} = n$$
 (02)

Q-5 Attempt all questions [14] (05)

[14]

(07)

[14]

Find the right hand and left hand limits of a function defined as follows:

$$f(x) = \begin{cases} \frac{|x-4|}{x-4} ; & x \neq 4 \\ 0 & ; & x = 4 \end{cases}.$$

a)

b) Prove :
$$\lim_{n \to \infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$$
 using definition. (05)

c) Find the limit point of
$$\left\{\frac{1}{n^2}: n \in N\right\}$$
 and $\left\{\left(-1\right)^n: n \in N\right\}$ if exists. (04)

Q-6 Attempt all questions

Show that the sequence $\{r^n\}$ converges if $-1 < r \le 1$. (07)a)

State and prove D'Alembert's ratio test. b)

Attempt all questions Q-7

State and prove Cauchy's general principle of convergence for sequence. (07)a) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{1/p}-1}$ is convergent for $p < \frac{1}{2}$ and divergent **L** \ (05)

b)
$$n^{p-1} \qquad (05)$$

c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(-\frac{5}{6}\right)^n$$
. (02)

State and prove Sandwich theorem for a sequence and using sandwich theorem prove $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right] = 1$. (06)a)

b) Show that a series
$$\frac{1\cdot 2}{3^2 \cdot 4^2} + \frac{3\cdot 4}{5^2 \cdot 6^2} + \frac{5\cdot 6}{7^2 \cdot 8^2} + \cdots$$
 is convergent. (05)

c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n+1}{n^p}$$
. (03)

